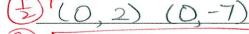

$$\frac{28}{1+5\sin\theta} = \frac{28}{1+5\sin\theta}$$




[a]

Fill in the blanks.

- The eccentricity is [i]
- The shape of the graph is a/an ELIPSE [ii]
- The equation of the directrix is  $U = \frac{28}{5}$ [iii]
- Find the rectangular coordinates of the [iv]

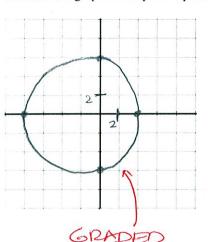


$$y - intercept(s)$$



[b]

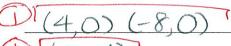
[b]


Sketch the graph on the grid provided above. You must provide a scale for the axes & plot all points from part [a][iv] above.

endpoints of the latus rectum/latera recta

Consider the graph of the polar equation  $r = 6 - 2\cos\theta$ .

GRADED BY ME



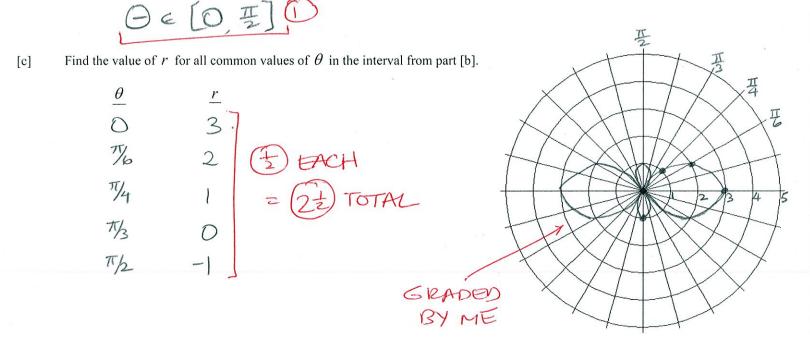



Fill in the blanks. [a]

- The shape of the graph is a/an CONEX LIMACON. [i]
- pass through the pole. [ii] The graph (does / does not)
- [iii] Find the rectangular coordinates of the

$$x - intercept(s)$$




$$y$$
 – intercept

Sketch the graph on the grid provided above. You must provide a scale for the axes & plot all points from part [a][iii] above.

[a] <u>Using the tests and shortcuts shown in lecture</u>, determine if the graph is symmetric over the polar axis,  $\theta = \frac{\pi}{2}$  and/or the pole. Summarize your conclusions in the table on the right. <u>NOTE: Run as FEW tests as needed to prove your conclusions are correct.</u>

| (00) -2(0)                                                                                                                                                                |                               |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|
| (r,-0): r= 1+2cos 2(-0) ()                                                                                                                                                | Type of symmetry              | Conclusion   |
| = 1+2cos (-20)                                                                                                                                                            | Over the polar axis           | SYMMETRIC    |
| = 1+2cos 200 SYM OVER<br>POLAR AXIS                                                                                                                                       | Over $\theta = \frac{\pi}{2}$ | SYMMETRIC    |
|                                                                                                                                                                           | Over the pole                 | SYMMETRIC    |
| $(r, \pi - \theta)$ : $r = 1 + 2\cos 2(\pi - \theta)$ $r = 1 + 2\cos (2\pi - 2\theta)$<br>= $1 + 2\cos (2\pi - 2\theta)$<br>= $1 + 2\cos 2\pi\cos 2\theta + \sin 2\theta$ | 275m20]                       | DPOINT IF    |
| = 1+2 cos 200 sym over                                                                                                                                                    | 200                           | ( POINTS IF  |
|                                                                                                                                                                           |                               | 20022        |
| AUTOMATICALLY SYM OVER POLE (1)                                                                                                                                           |                               | 22 POINTS 11 |
|                                                                                                                                                                           |                               | ALLCOR       |

[b] Based on the results of part [a], what is the minimum interval of the graph you need to plot (before using reflections to draw the rest of the graph)?



[d] Sketch the graph on the grid provided below. You must provide a scale for the polar axis & plot all points from part [c] above.